Multiple Petersen Subdivisions in Permutation Graphs

نویسندگان

  • Tomás Kaiser
  • Jean-Sébastien Sereni
  • Zelealem B. Yilma
چکیده

A permutation graph is a cubic graph admitting a 1-factor M whose complement consists of two chordless cycles. Extending results of Ellingham and of Goldwasser and Zhang, we prove that if e is an edge of M such that every 4-cycle containing an edge of M contains e, then e is contained in a subdivision of the Petersen graph of a special type. In particular, if the graph is cyclically 5-edge-connected, then every edge of M is contained in such a subdivision. Our proof is based on a characterization of cographs in terms of twin vertices. We infer a linear lower bound on the number of Petersen subdivisions in a permutation graph with no 4-cycles, and give a construction showing that this lower bound is tight up to a constant factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.

متن کامل

F-Permutations induce Some Graphs and Matrices

In this paper, by using the notion of fuzzy subsets, the concept of F-permutation is introduced. Then by applying this notion the concepts of presentation of an F-polygroup, graph of an F-permutation and F-permutation matrices are investigated.

متن کامل

On the tenacity of cycle permutation graph

A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013